
\i n

SYstems

Optimization

iL aboratory

A Parallel Decomposition Algorithm

for Staircase Linear Programs

Iby
L Robert Entriken

TECHNICAL REPORT SOL 88-21

December 1988

DTIC
FES 2 2 1989

Approved for puhlC i za
Distibution Unlranjt~ d

Department of Operations Research
Stanford University
Stanford, CA 94305

':!C "N

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

A Parallel Decomposition Algorithm
for Staircase Linear Programs

by

Robert Entriken

TECHNICAL REPORT SOL 88-21 . -- CT "

December 1988 2 2

Research and reproduction of this report were partially supported by the National Science Foun-
dation grants DMS-8800589 and ECS-8617905, the U.S. Department of Energy grant DE-FG03-
871E125028, the Office of Naval Research contract N00014-85-K-0343, and the Electric Power Re-
search Institute contract RP-2940-1 at Stanford University, and the U.S. Air Force Office of Scien-
tific Research, the U.S. Department of Energy contract DE-AC05-840R21400, the National Security
Agency, and the Science Alliance Program of the State of Tennessee at Oak Ridge National Labo-
ratory.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the author and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
'This document has been approved for public release and sale; its distribution is unlimited.

Table of Contents

A bstract .1

1. Introduction 1

2. Formulation of a Staircase Linear Program (SLP) 3

2.1. A One-Day Diet Problem 3
2.2. A Two-Day Diet Problem 4
2.3. A Three-Day Diet Problem 5

3. Reformulating SLPs into Multiple Subproblems 7
3.1. Two-Period SLP 7

3.2. n-Period SLP 9

4. Solving Subproblems with a Parallel Computer 11

4.1. Processes, Jobs and Queues 12
4.2. Reaching an Equilibrium 13

4.3. Infeasible and Unbounded Solutions 14

5. The Factors Affecting Speedup 15
5.1. The Number of Subproblems 16
5.2. The Number of Processors 17
5.3. Subproblem Ordering 18

Acknowledgements 19

References 19

Appendix A. The Diet Problem Solution20

Accei" ' or

NTIS CRA&l
ODIC TAB 0
Uii nr',o:J ,ted 0
Justificdbol

By ___

Dtst~ib tso" I

... 1_

I II II I II A-I ,

A PARALLEL DECOMPOSITION ALGORITHM
FOR STAIRCASE LINEAR PROGRAMS*

Robert Entriken

Department of Operations Research

Stanford University

Abstract

As part of an extended research project on the parallel decomposition of linear programs, a
parallel algorithm for Staircase Linear Programs was designed and implemented. This class of
problems encompasses a large range of planning problems and when decomposed has simple
subproblem formulations and communication patterns. This makes its solution a manageable
step toward our eventual goal of producing a general code that automatically exploits problem
structures of various forms.

SThe results presented here were derived from an implementation for a Sequent Balance
8000 shared-memory multiprocessor. The algorithm itself is message-based but can run on
either shared- or distributed-memory parallel computers.

-A simple diet planning problem is used to demonstrate the principles of the algorithm's
development and performance. When applied to this problem, the parallel decomposition algo-
rithm shows promise relative to present serial optimization codes. The nonlinear optimization
code MINOS 5.1 is used both as a basis for comparison and as a generic subproblem solver. The
greatest room for speedup is in exploiting problem structures. The results show that decompo-
sition can improve efficiency even with a single processor. Examples are given where multiple
processors lead to still greater efficiency. /

1. INTRODUCTION

The term Staircase Linear Program (SLP) describes a Linear Program (LP) that has a staircase

pattern in the nonzero coefficients of its constraint matrix, as illustrated in Figure 1.1. Each "step"

in the staircase typically corresponds to a collection of variables for a "period" of a planning horizon.

This research was supported by the Electric Power Research Institute, th, U.S A'- Force Offi ce of Scientific Research,

the U.S. Department of Energy, the National Security Agency, the National Science Foundation, the Science Alliancc
Program of the State of Tennessee, and the Department of Operations Research at Stanford University.

1-

Figure 1.1. The classic staircase pattern.

The collections of variables are described as periods because the staircase structure arises most
often from problems that represent systems over time [HL81]. In this report, we study multi-period
or multi-day diet plans as examples of SLPs. The diet planning problem is a very simple LP that

will help describe the reformulation and solution stages involved in solving staircase systems with
a parallel computer.

To make proper use of a parallel computer, we must reformulate the original problem into

nultiple subproblems and then submit them to multiple processors as a means of obtaining greater
throughput. The subproblems pass messages among themselves in a serial communication network
of the form shown in Figure 1.2, where the circles represent the subproblems and the lines between
them the communication paths. Each period's variables are associated only with the previous and

following periods' variables in Figure 1.1. The serial structure results directly from the pattern of

interdependencies between variables in the SLP. The medium of communication between processors
in the parallel computer should have the ability to mimic a serial network.

0-0-0-0
Figure 1.2. A serial communication network.

Abrahamson [Abr83] and Wittrock [Wit83] developed the topic of nested dual decomposition.

The same material is repeated here for completeness, but in much less detail. Their work focused

on the solution of such problems with a serial computer. We will consider here an extension to the
use of a parallel computer, and paraphrase their results to prove the parallel algorithm converges.

Three major factors have been identified that significantly affect the speed and efficiency with
which a solution is obtained in this framework:

(1) the number of subproblems into which we divide the SLP,

(2) the number of processors used to solve the subproblems, and
(3) the order in which the subproblems are solved.

A given subproblem may itself be a lower-dimensional SLP containing any number of adjacent

steps of' e original staircase.

-2-

It will be shown that there are diminishing returns associated with extensive decomposition of

SLPs, and in the same way with increasing the number of processors used. The argument against

both further decomposition and the use of more processors is the increasing cost of communica-

tion. It should be noted, however, that communication costs will diminish because of technology

breakthroughs. Hence, this effect should be less significant in the future. Finally, with a better

understanding of the dynamic and unpredictable path that the following parallel optimization al-

gorithm takes to a solution, we will be better able to appreciate the subtle eftect that the solution

order of the subproblems has on overall performance.

2. THE FORMULATION OF SLPS

2.1. A One-Day Diet Problem
The One-Day Diet Problem is an example taken from Chvhtal [Chv83]. Its mathematical formula-

tion can be found below as DIET1, with specific examples for the problem data A, b, c, and u. The

problem is to find the optimal selection of six commodities* z, based on their corresponding costs

(given by c), and their relative contributions toward satisfying the minimum daily requirements

b, for CALCIUM, PROTEIN, and ENERGY. The number of requirements is limited to three for

simplicity's sake, while the amount of each commodity selected to satisfy them is bounded above

by satiation points u. The boxes in Figure 2.1 represent the pattern of nonzero coefficients in the

costs and constraints. The problem is dense.

DAYI

minimize ct I

CALCIUM 800

PROTEIN 55

] >2000ENERGY 20

Figure 2.1. Structure of the one-day diet problem.

DIET1 is a linear program for determining a single day's purchases while spending the least

amount of money. It will be used as a base case for formulating and studying multi-day diet-

planning SLPs as examples. Th lrimal and dual formulations of DIETI are:

(Primal) minimize cTz subject to Ax > b, 0 < x < u.

(Dual) maximize bTyr - uTcr subject to AT7r - a < c, or > 0, 7r > 0.

The following notation combines the dual variables 7r and a with the prima! formulation:

(DIETI) minimize cT X

subject to ir: Az > b

17: 0 < z < u,

• OATMEAL, CHICKEN, EGGS, MILK, PIE, and PORK & BEANS.

-3-

whcre

2 2 54 285 22 80o 800
A 4 32 13 8 4 14 , 55

110 205 160 160 420 260 2000

cT=(3 24 13 9 20 19), u=(4 3 2 8 2 2)T .

The optimal selection of commodities is i = (4 0 0 4.5 2 0) T, with the corresponding

dual solution * = (0 0 0.05625)T and # = (3.1875 0 0 0 3.625 0)T. Seven iterations

of the simplex method [Dan63] are required to obtain this solution using MINOS 5.1 [MS87] with

the default parameter settings, resulting in a minimum cost of cT = 92.5. From the solution

to the dual, one might determine that the ENERGY constraint is the most difficult to satisfy

given the available commodities. Because there are zero prices on the CALCIUM and PROTEIN

constraints, one can quickly determine that the commodities chosen are relatively low in ENERGY

and high in CALCIUM and PROTEIN.

2.2. A Two-Day Diet Problem

DIE'r2 is a linear program that plans a selection of commodities over two days. It is similar to

repeating DIET1 twice, but the daily requirement of ENERGY is relaxed to be satisfied in any

combination over both days instead of each individually. The individual ENERGY constraints

were added together, doubling the value of the right-hand side (RHS) entry.

DAY1 DAY2

minimize COST

SCALCIUM [>800

PROTEIN] >55

ENERGY 4000

CACIJ 2!800

TI _>55

Figure 2.2. Structure of the two-day diet problem.

Figure 2.2 shows the 2-step sparse staircase coefficient pattern of DIET2. If the two individual

DIETI-type ENERGY constraints had not been added together when forming DIET2, the optimal

solution i of DIETI, repeated twice, would be the unique optimal solution to such a problem.

However, because we combined the individual ENERGY constraints into a single constraint, this

optimal solution to DfET2 is not unique, nor is it basic*.

* See Appendix A for a proof.

-4-

(DIET2) minimize cTzI+cTX2
subject to v1 : A1z bi

12 B1z1+A 2 z 2 > b2

O: 0<z 1 <u 1 , c2 : 0<z 2 <u 2 ,

where

(4 32 13 8 4 14 '

(110 205 160 160 420 260) (110 205 160 160 420 260)

Bi 0 0 0 0 0 0 , A 2 2 1254285 2280
0 0 0 0 0 4 32 13 8 4 14'

/4000)~
b= 800/

55 55

cT cT--(3 24 13 9 20 19), U1 = (4 3 2 8 2 2)T

The set of optimal solutions to DIET2 contains the optimal solution to DIETI repeated twice.

The locus of DIET2's optimal solutions is:

(iT i)=A(4 0 0 5.125 2 0 4 0 0 3.875 2 0)+

(1-A)(4 0 0 3.875 2 0 4 0 0 5.125 2 0), AE[0,1],

(ifrT)= (0 0 0.05625 0 0),

&T= &T (3.1875 0 0 0 3.625 0).

The added freedom in choosing the two-day selection of goods allows selections of each day

to be mutually dependent. Pair-wise dependence between repeating collections of variables is the

characteristic of SLPs that gives them their serial communication structure. DIET2 is our example

two-period SLP.

2.3. A Three-Day Diet Problem

Our example three-period SLP (DIET3) determines the optimal selection of three days' commodi-

ties. In this example the general staircase pattern begins to emerge from the nonzero coefficients

of the constraints as shown in Figure 2.3. There are the first and last periods (DAY1 and DAY3)

with only one adjacent period or collection of variables, and there is the middle period (DAY2)

whose neighbors precede and follow it. For an n-day problem, there will be n - 2 such "middle"

periods, each of which has two neighbors.

-5-

DAYI DAY2 DAY3

minimize COST

CALIJM > 800

PROTEI :] 2!55

ENERGY 4000

CALCI 800

PROTEIN 110

EINERG] 2000
CACU !800

Figure 2.3. Structure of the three-day diet problem.

I DIET3 the ENERGY requirement is shared between the first two days as in DIET2. In

addition, the PROTEIN requirement is shared between the last two days. This pattern can be

propagated by extending the last constraint over two days and listing the remaining two individ-

tialy below it. The third and fourth day share CALCIUM and after that the cyclical pattern

repeats: ENERGY, PROTEIN, CALCIUM.
(DIET3) minimize cTxl+cTz2+cTz3

subject to 7r, Aix, > b,
7r2 : Blx+A22 > b2

713: B 2 z 2 +A 3 z 3 _ b3

G: 0< X1u, C2 : 0<x2<u2 , o3 : 0<X3 <U 3 ,

where

Al= 12 54 285 22 80 , b

32 13 8 4 14 (5

B1 = (110 205 160 160 420 260) A2 1 1 0 205 160 160 420 260)0 0 0 0 0 0 2 12 54 285 22 80

b2 (4000)o
800J

(4 32 13 8 4 14) (4 32 13 8 4 14\
B 2 = 0 0 0 0 0 0j, 3 11 205 160 160 420 2601

0 0 0 00 0 2 12 54 285 22 80/

- 6-

(110)\
b3 = 20001,

800

cf=(3 24 13 9 20 19), us,=(4 3 2 8 2 2) , i=1,2,3.

The solution to DIET3 is similar to that of DIET2 in that the optimal single-day selection

from DIETI, repeated three times, is optimal overall. In addition, as before, this solution is one

of a class of optimal solutions to DIET3:

(xTiT) =A(4 0 0 5.125 2 0 4 0 0 3.875 2 0)+

(I-A)(4 0 0 3.875 2 0 4 0 0 5.125 2 0), AE[0,11,
T =(4 0 0 4.5 2 0),

(*T*T J')=(0 0 0.05625 0 0 0.05625 0),
S= 2= T (3.1875,0 0 0 3.625 0).

There is only one degree of freedom in the solution because the PROTEIN constraints are

nonbinding.

3. REFORMULATING SLPS INTO MULTIPLE SUBPROBLEMS

We will now focus on reformulating the original general SLP into many interrelated subproblems

using a technique called Benders decomposition [Ben62]. The purpose of creating a collection of
subproblems in place of a single problem is to solve the collection simultaneously with a parallel

computer. It will suffice for the scope of this report to present the subproblem formulations

directly, and then go on to the parallel algorithm for solving the SLP. Each subpr)blem formulation

contains independent portions of the original problem data, additional necessary conditions (cuts),

and accounting variables that are simple machinery for algorithmic support-most calculations are

implicit in the formulations, not explicit in the algorithm.

The following discussion will focus mainly on the case when the subproblems are solved to

optimality, placing less emphasis on on cases when their solutions are infeasible or unbounded.

This facilitates the exposition of the algorithm, saving the more complex cases for the next section

when our insight is sufficiently developed.

3.1. Two-Period SLP
Benders decomposition differs from the more familiar Dantzig-Wolfe decomposition in that the

forri. r partitions an LP according to its variables whereas the latter partitions it according to its

cor.straints. Each subproblem fixes the values of certain primal and dual variables of the original

SLP in order to solve a reduced problem over a smaller set of variables. DIET2 can easily be

decomposed into the two interdependent subproblems DIET2.1 and DIET2.2, that are solved one

after the other, with appropriate modifications to certain algorithm parameters (fI2 , i2, P2, k and

6), until the modifications no longer affect the solutions of the two subproblems. These parameters

are explained in detail following the formulations. In general, a subscript refers to a subproblem

numiber, and a superscript k refers to a variable's value in the kth solution to the subproblem. We

-7-

will ,s(the notation i for intermediate subproblem solutions, with i to denote the final solution

for the full SLP. All other variables, primal and dual, will follow the same notation.

Modify
RHS

Add Y
Constraint P2]

Figure 3.1. Information flow in the two-period SLP.

DIET2.1 initially drops the ENERGY constraint and the second day's PROTEIN and CAL-

(IUNI constraints from the original SLP, and solves only with regard to the first day's CALCIUM

and PROTEIN requirements and minimum COSTS. Naturally, a certain amount of ENERGY is

thereby offered by DIET2.1. It is calculated as y, = BIx, in the rows corresponding to the dual

variables pl.

(DIET2.1) minimize cT xi + 01 =z

subject te 7r, : Axz > b,

pi: Bz 1 - Iy =0

P: fl2Y1+6201 _ P2

or,: O < X, 5u1.

(DIET2.2) minimize c2 2 = Z2

subject to 12 W2 =

x 2 : A 2z2+9w2 > b2

U2: 0<X2 <u 2 , w2 >0, q 2 =0if6=0.

Taking (, , , d') as the first solution to DIET2.1 with its parameters 112,i2, and P2

set to zero, we note that 6' and ' will be used in DIET2.2's formulation. We set 61 = 0 if DIET2.1

finishes unbounded, 61 = 1 if it finishes optimal, and 61 = undefined if it finishes infeasible, because

the entire SLP must be infeasible.

Let us assume that DIET2.1 finishes optimal. We set 6I = so that DIET2.2 adopts P1 as

the amount of ENERGY offered by DIET2.1. (Note that is effectively subtracted from the

right-band side when 61 = I because w 2 is fixed at 1.) After solving DIET2.2 and assuming

optimality, we return to DIET2.1 with the optimal prices on DIET2.2's constraints corresponding

to -r 2 . These are used to impose a new constraint on Y, to ensure that the same dual feasible

extreme point *r will not be obtained again when DIET2.2 is solved, unless the optimal value of

yi h-s been reached. This is the verbal interpretation of the pi rows of the first-day subproblem.

-8-

The inequality ft2Y1 + i201 >_ 152 in DIET2.1 is a collection of added constraints (r)Ty 1 +
jk0l > pk obtained from K dual solutions to the second-day subproblem (j, ki k f k

1,.., K). In particular, 62 = , 2fT is a vector of Kronecker delta functions indicating
optimality in each of the K solutions. If the kth dual solution to DIET2.2 is dual feasible and

bounded above, then we set 6k= 1; if it is dual feasible and unbounded above then k = 0; if dual

infeasible (indicated by an unbounded primal solution), the two-period primal SLP is unbounded.

The vector fi2 (... 2.. .,2T is a corresponding collection of scalars calculated as P' = -: - F.

from Ek (the objective value, or sum of infeasibilities) and ik (the price, or multiplier, on the
constraint corresponding to 172). Finally, R12 0- (2,, 2)T, where r2 is the vector of prices or

multipliers on the constraints corresponding to 7r2.

One way of interpreting the addition of constraints to DIET2.1 is that the matrix A 2 is being
approximated by the independent rows in 112. It is therefore sufficient to carry along at most the

number of constraints corresponding to the row-rank of A 2 . In other words, when such constraints

become slack, they may be discarded. However, if they turn out to be binding in the final optimal

solution, they will be regenerated. Discarding cuts runs the risk of cycling due to degeneracy: it

could lead to a repeated pattern of discardirig and regenerating the same constraints.

3.2. n-Period SLP
'rhe subproblems of the n-period SLP are of three types: the first period as in DIET2.1, the last
period as in DIET2.2, and those with two adjacent subproblems, which are a combination of the

two other forms. The three subproblems of DIET3 (DIET3.1, DIET3.2, DIET3.3) exemplify these

three types and thereby those of an n-period SLP.

Modify
RHS

Add
Constraint

Figure 3.2. Information flow in the n-period SLP.

Following the manner in which DIET2 was decomposed into two subproblems, we will quickly
go through the division of the three-day diet problem into three subproblems. This exercise will

6 &monstrate two key procedures. The first is the formulation of a subproblem that accepts solutions

from two others, the previous and following subproblems, as opposed to only one other in the

DIET2 cases; this allows a generalization to the n-period SLP. The second procedure is associated

with the possibility of using more than one processor, thereby carrying Benders decomposition into

-9 -

the tnultiprocessor environment. As described, a subproblem may have more th'e one neighbor.

Heince, an algorithmic choice must be made as to which neighbor to solve next when there is only

one processor. When multiple processors are available, a choice need not be made-all of the

n,.ighboring subproblems may be solved simultaneously.
'he three subproblems of DIET3 are formed by partitioning the daily selections as before.

DIET3.1 will plan purchases for the first day, DIET3.2 for the second day, and DIET3.3 for the

third (lay. As before, Yl is the amount of ENERGY in the first day's selection, while 1/2 is the

amotiit of PROTEIN in the second day's selection.

(DIET3.1) minimize cT + 0+ = zI

subject to 7r, Alx> bi

pi Bixi - Iyl = 0

ill f12Yl + 20 1 P2

al : 0 < X1 u.

(DIET3.2) minimize cT2 x2 + 02 = z2

subject to r : 6kW2 = 6k

712: A 2 x 2 + lw2 b2

P2: B2X2 - 1Y2 0

p2: f13Y 2 + 6302 > P3

02 : 0<X2 _<u2, w2>0, h=0 if k= 0 .

(DIET3.3) minimize cT3 = z3

subject to r13: iw~ W b

7r3 . A 3 z 3 + w3 _b 3

03: 0 _< X3 _!5 U3 , W3 O, 13 ==0 if k -0.

Subproblem Parameters

DIET3.1 f12,62, P2

DIET3.2 k i - - -

DIET3.3 b, _k

Each of the subproblem formulations contains parameters that are based on the solutions of

neighboring subproblems. The next section will describe the continual updating of these parameters

as part of a parallel decomposition algorithm.

- 10-

4. SOLVING SUBPROBLEMS ON A PARALLEL COMPUTER

From the subproblem formulations in the previous section, we have seen that any given subproblem

contains from two to five parameters. These are initially undefined, and are first given values when

a neighboring solution is communicated. In the serial dual-decomposition algorithm we begin by

solving the last-period subproblem (knowing that any solution must meet the dual constraints

corresponding to zn), and then work toward obtaining a dual-feasible solution and then an optimal

solution for all periods, if possible.

In the parallel algorithm we begin by solving all subproblems simultaneously, with their com-

munication parameters initially set to zero. Their solutions, despite not including neighboring

information, are still relevant and can be used to construct modifications. When used to modify

right-hand sides, they will direct the new optimal solutions to a possibly different set of relevant

solutions. When used to add constraints, the type of constraint depends on whether the neighbor-

ing subproblem solution was infeasible or feasible and, if feasible, whether bounded or unbounded.

Initially only the last subproblem solution may be used to add an optimality constraint, yet any

infeasible solution may be used to generate a necessary condition for feasibility (a feasibility con-

straint). In general, an optimality constraint may be passed only if the present subproblem already

contains such a constraint (except the last subproblem, of course).

Just as a two-subproblem decomposition, with no middle subproblems, is a special case of an

n-subproblem decomposition, the single-processor algorithm is a special case of the multiprocessor

parallel algorithm with one subproblem being solved at a time instead of many. With only one

processor, the parallel algorithm reduces to Benders decomposition.

The parallel computer architecture used for solving SLPs with the parallel algorithm is as-

sumed to have numerous independent and powerful processors. The amount of memory available

locally for the use of each individual processor is assumed to be substantial (> - Megabyte)

since the optimization code (MINOS 5.1) stored for each processor is large, and each subprob-

lem data-set can be large. Shared- and distributed-memory multiprocessing computers as well as

distributed-processing computers are suitable for our application. Table 4.1 gives some examples

of commercially available processors.

Number of Size of
Type Name Processors Memory
Shared Memory Sequent 8 NS32032 8 Meg.

Balance 8000
Distributed Memory NCUBE 4 Specialized 1/2 Meg ea.

Intel iPSC 64 80286 1/2 Meg ea.
hypercube

Distributed Processor VAX cluster 5 VAXstation lls 8 Meg ea.
on Ethernet I I _ I

Table 4.1. Examples of parallel computer architectures.

In a discussion of alternative architectures, the issues of computational and communication

loads are of primary importance. The ideal is to distribute the computational load equally across

- 11 -

all processors while keeping the time used for communication to a minimum. The reformulation

(initialization) stage requires a large flow of information between the processors, but in the solution

stage the messages are typically small and infrequent. This is evident because reformulation

involves distributing the original data into n subproblems, whereas during the solution stage most

time is spent solving LP subproblems with the simplex method.

The description of this algorithm is directed primarily toward a shared-memory implementa-

lion. Parallel processors with distributed memory reqnire an additional scheme for distributing

the work load so that the processors are responsible for disjoint subsets of the subproblems. If

the subset of a processor contains more than one subproblem, they should be handled as in the

single-processor shared-memory case (a special case of the parallel algorithm below). In addition,

the scheduling of subproblems between processors becomes an implicit result of message passing.

4.1. Processes, Jobs and Queues
There will be a user-specified number of subproblems n and processors p involved in solving a

general SLP. The number of processors could exceed the number of subproblems (p > n) but this

would leave the extra processors unused, or inefficiently loaded. Hence, we assume that p < n.

Associated with each of the n subproblems is ajob consisting of the loop of tasks in Figure 4.1.

The term "job" is used to emphasize the fact that it encompasses more than solving linear program

subproblems. The tasks of each job are repeated in succession and any processor can execute them.

A job is.always in one of three states: run, running; pend, waiting to be run; or sleep, solved

and waiting for new information.

Sw Mrr FOR

MESSAGE

Figure 4.1. The RUN JOB loop.

The p processors repeatedly execute the loop in Figure 4.2, which transfers jobs among three

shared queues (run, pend, and sleep) according to the result of running through the job loop.

Each queue corresponds to one of the three job states.

Figure 4.2. The process loop.

- 12-

The run queue contains the jobs currently running on p or fewer processors, the results of
which will define the next states of the jobs. Thus, it will never contain more than p jobs. The
pend queue is where a processor finds jobs (subproblems) waiting to be run (solved), and the

sleep queue is where jobs reside while at the WAIT FOR MESSAGE step.

In the process loop of Figure 4.2, GET JOB involves inspecting the pend queue and, if there
is an available job, transferring it to the run queue. Jobs are run (RUN JOB) as a repeated
sequence of tasks, beginning at the SOLVE step. After the jobs pass through the SOLVE step,
they continue around the loop unless the solution is unchanged, in which case the job is placed in
the sleep queue (QUEUE JOB) to wait for a message.

In a more advanced implementation, one might consider interrupting the SOLVE step after
a specified number of iterations and placing the job, though unfinished, back in the pend queue.

This would have the effect of further balancing the computation power across the subproblems,
and would incorporate new information more quickly. In addition, it has recently been observed

that if the simplex method is applied to the dual formulation of a subproblem, every dual-feasible
extreme point visited by the simplex method has the potential to form a new necessary constraint

on the preceding neighbor [HLS88].

job wa job

Figure 4.3. The transfer of jobs amongst queues.

The modification of a subproblem in Benders decomposition is governed by the neighbor that
sent the message; if it was the preceding neighbor, then the RHS is modified; if it was the following

one, then a constraint is added. Once modified, subproblems are solved using the simplex method
and their solutions are broadcast to their neighbors. If a neighbor is in the sleep queue when the

solution is sent, it is awakened and transferred to the pend queue, since it is now able to leave the

WAIT FOR MESSAGE step (see Figure 4.3).

4.2. Reaching an Equilibrium
The p processors continue their loops, becoming idle only when there are no jobs in the pend

queue. If this happens, a quick inspection of the run queue will determine if all jobs are sleeping.
If so, the system is deadlocked. Each processor recognizes deadlock as the signal to stop, but before
stopping, one predesignated processor will execute a cleanup operation such as printing a solution.

In the current design, deadlock is needed to stop the algorithm.

Given that a system cannot reach deadlock when jobs wait for messages that will always be
sent, one may wonder whether the processors will ever stop, and if so, how? When a subproblem

parameter modification does not cause an optimal solution of the subproblem to change, the job
does not rebroadcast its solution to its neighbors. At this point, the subproblem is said to be

- 13-

ill "equilibrium" with its neighbors; it is then placed in the sleep queue to wait for updating

information. All subproblems must reach a simultaneous equilibrium for the same reason that the

single-processor Benders algorithm does: 1) there are a finite number of dual extreme points in the

subproblems, and 2) a different one must be communicated each time to maintain disequilibrium.

lenice, at some point the collection of useful dual extreme points is exhausted. The equilibrium

relationship is reflexive and transitive, and so a system-wide equilibrium is achieved.

This argument is also valid when many such dual extreme points are being passed simultane-

oiislv, as in the multiprocessor case. The condition for equilibrium is precisely deadlock, with all

jobs sleeping, since no new and useful information is forthcoming.

4.3. Infeasible and Unbounded Solutions
\V!',at should be done if a subproblem finishes with an infeasible or feasible unbounded solution? If

it is the first subproblem and it is infeasible (INF) then the entire SLP must he infeasible because

the constraints corresponding to rl and pi cannot be satisfied. If it is 4he last subproblem finishing

unbounded (UNB) then the SLP must be unbounded because there do not exist prices 7r" that can

satisfy the dual conditions associated with the variables z,, and w,,. These two cases correspond

to the top and bottom entries in Figure 4.4. In both cases the algorithm stops.

FI rst IN/ SLP Infeasible
Sub IJNB •Pass Extreme Ray Forward

SMiddle INF:]i Pass Feasibility Constraint Back
Sub UNB so Pass Extreme Ray Forward

SLast INF no Pass Feasibility Constraint Back
Sub UNB •p SLP Unbounded

Figure 4.4. Alternative recourses for infeasible and unbounded subproblems.

In the remaining cases the algorithm continues. If a subproblem other than the first is infea-

sible, the infeasibility multipliers, say *2, are used to impose a constraint of the form Jr'y1 i> bl

on the preceding subproblem (6 gets a zero entry). This constraint is a necessary condition on yli

for the feasibility of the second subproblem and thus the entire SLP. In general, a chain of such

infeasibility conditions may extend from the jth subproblem back to the first and indicate that the

entire SLP is infeasible.

Likewise, if a subproblem other than the last finishes unbounded, the extreme point, say

1, obtained from the primal feasible solution and the extreme ray, say ag, (ar > 0), from the
column entering the basis and its accompanying cost 61 from the incoming column's reduced cost

are inserted in the following subproblem as two w2-type columns. Only extreme-ray columns

ever have coefficients in the objective row, which is why they were not explicitly included in the

formulations of the previous section. The extreme-point column has its 6j parameter set to one in

order to modify the RHS (Section 3.3.) and the extreme-ray column has its 6 set to zero to allow

freedom in the direction of the unboundedness. Its accompanying cost permits the subproblem to

weigh the benefits of this direction against present and future costs.

- 14-

If a finite solution is found to the ray-modified subproblem, the constraint it returns will

necessarily restrict the old ray solution of the previous subproblem by giving the ray an unattractive

positive cost.

If an infeasible solution is found to the ray-modified subproblem, the returned constraint will

cut off the old ray solution outright (since it leads to infeasibility).

If an unbounded solution is found, it passes a new ray one step further. Such new rays can

form a path to the last subproblem, which if unbounded too, means the entire SLP is unbounded.

Figure 4.5 summarizes the Benders algorithm for the 2-period SLP. The reader should imagine

any number of middle subproblems inserted into the diagram to represent the general case.

SLP
Infeasible

lot

DIET. op Mod RHS
Unb I Ray

Yes " "tnr

No DifersSLP
SLP fro Opt Unb "-W Unbounded
Optimal last time Opt
(Equilibrium) ? Coantrald?

Figure 4.5. Flow of the parallel decomposition algorithm.

The boxes each represent a subproblem and its possible solution states (Inf, Unb, and Opt).

The labeled arcs represent the passed information based on subproblem solutions. and the test for

equilibrium is a repeated solution to the second subproblem.

5. THE FACTORS AFFECTING SPEEDUP

The behavior of the parallel decomposition algorithm will now be investigated using a seven-day

diet problem (DIET7) generated in the same fashion as DIET2 was extended to DIET3. The three
parameters (dimensions) of our behavioral study will be the number of subproblems, n, into which

the seven-day problem is decomposed, the number of processors, p, used to solve the subproblems.

and the order in which the subproblems are solved. In each case we will discuss the factors involved
in obtaining an SLP's solution more swiftly. DIET7 turns out to be well suited for decomposition

because many of the proposed algorithm's benefits are realized in the results obtained. Not all

problems are so amenable to decomposition, but we feel confident that significant speedups are

often attainable on parallel computers.

- 15 -

5.1. The Number of Subproblems
Some of the issues involved in deciding how many subproblems to create are:

1) the natural structure of the problem,

2) tie overhead involved in decomposing,
3) the resulting sizes of the subproblems, or how long they will take to solve on average, and
-I) the number of pro-essors available.

[he seven-period problem was solved as a single LP in 48 iterations using MINOS 5.1. This

is the benchmark for comparing combinations of the above parameters. Along the subproblem
,dimension ni. DIET7 was solved in 2-. 3-, and 7-subproblem decomposition schemes using a single

pr,:essor. Efficiencis can sometimes be gained by merely breaking a problem into twosubproblems
),,,:ause the amount of work per iteration is less and even the total work of both subproblems can

ho less. This proved to he true for DIETT.

As a quick measure of performance, we will assume that the amount of work per iteration

is proportional to the number of rows in the subproblem-a reasonable approximation for sparse
linear programs. The number of iterations per subproblem is the cumulative sum of iterations
in successive solves until the entire SLP is solved. Hence, the iterative work per subproblem is

appioximated a. the product of the number of rows and number of iterations. We can observe

from Table 5.1 that the total amount of iterative work actually decreased from the single to the
double subproblem case for DIET7.

p n sub # # rows # iterations work
1 1 1 16 48 768

totals 16 48 768
2 1 11 21 231

2 12 31 372
totals 23 52 603

3 1 9 24 216
2 13 45 585
3 8 34 272

totals 30 103 1073

7 1 7 28 196
2 9 21 189
3 9 18 162
4 9 29 261
5 9 24 216
6 9 11 99
7 6 7 42

1 totals 58 138 1165

Table 5.1. Total work as seen in the subproblem dimension.

As th.- number of subproblems is increased, the overhead of reformulating increases and there

is a greater need for communication. At some point, overhead and communication will begin to

outweigh any benefits associated with creating more subproblems. Hence, a plot of the total work

done against the number of subproblems created should look qualitatively like Figure 5.1, which

attains a minimum at some point n*.

- 16-

Total

Work

I.

Number of Subproblems

Figure 5.1. Total work in the subproblem dimension.

In the case of DIET7, n* = 2 subproblems using a single processor. For a different problem

or a different number of processors, the value of n* may be different-possibly even equal to one.

5.2. The Number of Processors

Choosing the number of processors is subject to its own set of complexities. The design of any

parallel algorithm is based upon the hope that the incorporation of more processors will offer

almost linear speedup. However, the allocation of additional processors is a key issue because

there are decreasing returns on investment. It is important that extra processors are used and do

not sit idle. Having more processors than subproblems is an obvious case of inefficiency, but even

when their numbers are equal, some processors will inevitably become idle (e.g. n = p = 2). For

any given problem, there is some compromise position at which the best performance is achieved.

n sub T # r ows ! itertionsl work
1 7 1 7 28 196

2 9 21 189
3 9 18 162
4 9 29 261
5 9 24 216
6 9 It 99
7 6 7 42

totals 58 138 1165
2 7 i 7 23 161

2 9 21 189
3 9 17 153
4 9 19 171
5 9 23 207
6 9 11 99
7 6 7 42

totals $8 121 1022
4 7 1 7 23 161

2 9 21 189
3 9 17 153
4 9 25 225
5 9 22 198
6 9 11 99
7 6 7 42

totals S8 126 1067

Table 5.2. Total work as seen in the processor dimension.

- 17 -

Note in Table 5.2 that with two or four processors the total work necessary to solve the

problem is less than in the single processor case. This phenomenon is due to the order in which
siilproblems are solved, and will be discussed further in the next section.

5.3. Subproblem Ordering
I the present implementation of the parallel decomposition algorithm, there is no explicit control

over the order iii which subproblems are solved. They are solved as they are taken by idle processors

from tie pend queue on a first-in first-out basis. (The first in the pend queue will be the
'11hproblem that received a message least recently.) The importance of order on solution time

is dlemonstrated in Table 5.3, where DIET7 was solved twice with four processors on a Sequent

Balance 8000. This machine has 8 CPUs, but because the processors are continually shared with

other users. the order in which the subproblems are solved is not guaranteed to be the same in any
two otherwise identical runs. As Table 5.3 shows, this can significantly affect the performance of

the algorithm.

p) n sub # I #rows # iterationsl work
4 7 1 7 23 161

2 9 21 189
3 9 17 153
4 9 19 171
5 9 23 207
6 9 11 99
7 6 7 42

totals 58 121 1022
7 1 7 32 224

2 9 26 234
3 9 17 153
4 9 31 279
5 9 32 288
6 9 11 99
7 6 7 42

totals S8 156 1319

Table 5.3. Total work as seen in the order dimension.

A possible remedy was previously alluded to during the discussion of the RUN JOB loop.

If the algorithm were enhanced so that each job were put back into the pend queue after some

predetermined number of iterations, the power of the CPUs would be more evenly distributed over

the subproblems and the processors would be utilized more efficiently. This practice has the effect

of incorporating new information more quickly because the latest solutions can be used to make

modifications midway through a solution step. It also reduces the time that subproblems spend
waiting for a processor. Future work will include such an enhancement to the algorithm.

- 18 -

ACKNOWLEDGEMENTS

The seed for this research into the use of parallel computers was formed three years ago

in a so-called flash of awareness. By being given the opportunity to work at the Oak Ridge

National Laboratory in the Autumn of 1987, where the resources of the Mathematical Sciences

Section were open to me, I was able to implement this idea and see it yield new and exciting
prospects. The friendly and colloquial atmosphere at the laboratory speeded my progress, and

having direct access to the people and parallel computers there proved priceless. Especially valuable

was the opportunity to meet visitors to the Special Year in Numerical Linear Algebra. Particular

recognition must be given to George Dantzig, Ed Klotz, Chuck Romine, and Michael Saunders for

reviewing drafts of this paper. Thanks also go to Stanford's Department of Operations Research
for the use of their TEXtures software, Macintosh computers and LaserWriter printer.

TEXtures is a trademark of Addison-Wesley Publishing Company, Inc. TX is a trademark
of the American Mathematical Society. Macintosh and LaserWriter are a trademarks of Apple

Computer, Inc.

REFERENCES

[Abr83] Philip G. Abrahamson (1983). A Nested Decomposition Approach for Solving Staircase
Linear Programs, Ph.D. Dissertation, Dept. of Operations Research, Stanford University,
Stanford, CA.

[Ben62] J. F. Benders (1962). Partitioning procedures for solving mixed-variable programming

problems, Numerische Mathematik 4, 238-252.

[Dan63] George B. Dantzig (1963). Linear Programming and Ertensions, Princeton University
Press, Princeton.

[Chv83] Vagek Chvital (1983). Linear Programming, W. H. Freeman and Company, New York
and San Francisco.

[GMSWV87] Philip E. Gill, Walter Murray, Michael A. Saunders and Margaret H. Wright (1987).

Maintaining LU factors of a general sparse matrix, Linear Algebra and its Applications,

88/89, 239-270.

[11L811 James K. Ilo and E. Loute (1981). A set of staircase linear programming test problems,
Mathematical Programming 20, 245-250.

[IILS88] James K. Ho, Tak C. Lee and R. P. Sundarraj (1988). Decomposition of linear programs

using parallel computation (revised), Invited paper at the Symposium on Parallel Opti-

mization, Madison, WI.
[MS87] Bruce A. Murtagh and Michael A. Saunders (1987). MINOS 5.1 user's guide (revised),

Report SOL 83-20R, Dept. of Operations Research, Stanford University, Stanford, CA.

(Wit83I Robert J. Wittrock (1983). Advances in a Nested Decomposition Algorithm for Solving
Staircase Linear Programs, Ph.D. Dissertation, Dept. of Operations Research, Stanford

University, Stanford, CA.

- 19-

Appendix A. THE DIET PROBLEM SOLUTION

We wish to show how an optimal solution to (2) can be fashioned from an optimal solution of the

smaller LP (1).
minimize cTz = z

Tr: Ax > b
p: aTx > 0/ 2

(1)

X > 0.

minimize cTXZ + CTX 2 = Z2

7 1 : Ax1 > b

pi: aTx, +ar x 2 2 # (2)
W2 :AX2 __b

Xz>0 i= 1,2.

With ;i and (i p) as the optimal primal and dual solutions to (1), and (i i2) and (ir, *j i2) as
the optimal primal and dual solutions to (2), we know from strong duality that

i" = -- bTit + 1/2, (3)

a (d

i2
=

cTi I + cTi2 =bT*it 4ri 1 + bTit2 . (4)

a) Show that () is primal feasible for (2).

Clearly i > 0. The 7r constraints of (1) imply that the 7r, and W2 constraints of (2) are

satisfied, and the p constraints of (1) imply that aTi > 6/2, i.e. 2aTi > f. >

1)) Show that (it p *) is dual feasible for (2).

The dual of (2) is

maximize bT7r, + 6p + bT1r2 = z2

xt: ATAri + apt > e
X2: api + ATir2 > c

l 2! 0, #2 > 0.

The dual of (1) implies that ATir + a > c and * > 0. I

c) Show that (), (r Jr) is optimal for (2).

Knowing these primal feasible and dual feasible solutions of (2), it is sufficient to show that

they satisfy (4). From (3),

2i = cTi + cTi = bTf " + #A + bTfr = i 2.

Note that if i is non-degenerate, () cannot be basic for (2) because it has an even number of

variables off their bounds, and (2) has an odd number of constraints.

- 20 -

UNCLASSIFIED
SECUITY CLAWICATION OF ThIS PAGl (MA DW_ _ __.,

READ WS3IRUCflOMiREPORT DOaM INTTIOW PAGE EOUR COMPLEtDE' FORM
1. RgPgpT NUNDiR 40 T ACCU NO: I l4li1VWT*l CATALOg HUil9N

SOL 88-21

4. TITLE (€svJdeh.) S. TYPE OF REPORT G PERIOD COVIERED

A Parallel Decomposition Algorithm Technical Report
for Staircase Linear Programs

6. PE9RFOINosw oG. REPORT HUMS,.

?. AUTHOSIqg) G. CONTRACT OR GRANT NUNSIrel)

Robert Entriken N00014-85-K-0343

-6. pERFORMING ORGANIZATION N*M9 AND ADODRES I. PmGRAM ELEMENT PROJECT, TASM

AI ORlM UNiT NUMBERS

Department of Operations Research - SOL
Stanford University 1111MA
Stanford, CA 94305-4022

I. CONTROLLING OFFICS NAM AND AoRESS IS. REORT DATE

Office of Naval Research - Dept. of the Navy December 1988
800 N. Quincy Street IL 1tum9fOF PAGS n

Arlinqton, VA 22217 20 pages
I& SECuRITV CLAIS. (O 1We ,et)

UNCLASSIFIED

IS& DJCkUHPIICATIO W NeGRADING

-L - S1RIUFJON STATEMENT (of Ie ANWO)

This document has been approved for public release and sale;
its distribution is unlimited.

IT. OISISluTION STATE[MENT (.5/. d).OW nmd AM Ele me as dla k lll

Il. SUPPLEMENTARY NOTE$

IS. KEY WORDS (Cem~ e en f *ee1 O 9 einp8mE t* l &wd we* I Mas

Linear Programming, Parallel Processors, Decomposition,
Large-Scale, MINOS, Staircase

L AISTRACT (Cme= an o wwa * skN, Of.. mW OdNW* A M A00680

(Please see reverse side)

DO 1473 Iw'ON OF' I NOV " to ONOLIrs

SECUNITY CLAISCATION OF TOnM PAOE 0D . 'm

CUcITY CLA---ICATION OF TNi PAI9l 0018 Na ferit

A PARALLEL DECOMPOSITION ALGORITHM
FOR STAIRCASE LINEAR PROGRAMS

Robert Entriken

Department of Operations Research
Stanford University

Abstract

As part of an extended research project on the parallel decomposition of linear programs, a parallel
a!gorithm for Staircase Linear Programs was designed and implemented. This class of problems
encompasses a large range of planning problems and when decomposed has simple subproblem
formulations and communication patterns. This makes its solution a manageable step toward our
eventual goal of producing a general code that automatically exploits problem structures of various
forms.

The results presented here were derived from an implementation for a Sequent Balance 8000
shared-memory multiprocessor. The algorithm itself is message-based but can run on either shared-
or distributed-memory parallel computers.

A\ simple diet planning problem is used to demonstrate the principles of the algorithm's develop-
ment and performance. When applied to this problem, the parallel decomposition algorithm shows
promise relative to present serial optimization codes. The nonlinear optimization code MINOS 5.1
is used both as a basis for comparison and as a generic subproblem solver. The greatest room
for speedup is in exploiting problem structures. The results show that decomposition can improve
,fficiency even with a single processor. Examples are given where multiple processors lead to still
greater efficiency.

SGCUMTV CLAFIPiCATMI OP Tw* PAG@EM v.q Ea,-.e.E

